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Computational fluid dynamic (CFD) simulation is a powerful tool in the design and

implementation of microfluidic systems, especially for systems that involve

hydrodynamic behavior of objects such as functionalized microspheres, biological

cells, or biopolymers in complex structures. In this work, we investigate

hydrodynamic trapping of microspheres in a novel microfluidic particle-trap array

device by finite element simulations. The accuracy of the time-dependent

simulation of a microsphere’s motion towards the traps is validated by our

experimental results. Based on the simulation, we study the fluid velocity field,

pressure field, and force and stress on the microsphere in the device. We further

explore the trap array’s geometric parameters and critical fluid velocity, which

affect the microsphere’s hydrodynamic trapping. The information is valuable for

designing microfluidic devices and guiding experimental operation. Besides, we

provide guidelines on the simulation set-up and release an openly available

implementation of our simulation in one of the popular FEM softwares, COMSOL

Multiphysics. Researchers may tailor the model to simulate similar microfluidic

systems that may accommodate a variety of structured particles. Therefore, the

simulation will be of particular interest to biomedical research involving cell or

bead transport and migration, blood flow within microvessels, and drug delivery.
VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4822030]

I. INTRODUCTION

In recent years, microfluidic systems have received great interest in life science, biochemis-

try, pharmacology, and medical diagnostics.1–3 By miniaturizing and integrating diverse func-

tionalities, microfluidic systems provide the ability to perform laboratory operations on small

scales (i.e., lab-on-a-chip devices). They can synthesize and analyze small volumes of sample,

minimize reagent consumption, integrate high-throughput sample processing steps, and reduce

processing time, all of which provide great promise for both fundamental research and practical

applications. Most microfluidic systems involve complex mixtures of biological particles, such

as functionalized microspheres or colloids4,5 and cell suspensions.6 Applications of these micro-

fluidic systems include biomolecule detection and profiling,7,8 microsphere-based micromixing

and immunoassays,9,10 and cell sorting and separation.11,12 For example, the experiments of

sorting, separation, and trapping of CTCs have been performed using microfluidic systems with

similar hydrodynamically engineered configurations.13–15 To optimize the functionalities of

these systems, one needs to understand the hydrodynamic behavior of the particles so as to

manipulate them in a controlled manner. Karimi et al. briefly reviewed the hydrodynamic

mechanisms of cell and particle trapping.16 However, microfluidic devices are not simply

scaled-down versions of the conventional macro-scale systems. Because the dimensions of a
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microfluidic structure are small, particles suspended in a fluid become comparable in size to

the structure itself, which dramatically alters the system’s behaviors. As a result, the fluidic

dynamics are rather complicated and are affected by many parameters, i.e., the fluid viscosity,

velocity, and pressure, the device geometry, the particle number, shape, and elastic flexibility

(specially for blood cells or emulsions), and the fluid-particle interactions. The interactive com-

plexity of these parameters often prevents a holistic understanding of the systems, making it

difficult to achieve reliable designs and effective experimental operation.

To study the microfluidic systems, computational fluid dynamic (CFD) simulations coupled

with solid mechanics have become an increasingly important tool. By incorporating the com-

plexities of its parameters, the microfluidic system’s hydrodynamic behavior can be predicted

and visualized, even though the system’s minute dimensions make them difficult to prove via

explicit mathematical methods or experiments. Therefore, the simulations help researchers

assess design alternatives at reduced cost and guide experimental operation.17,18 For a particle-

based target detection platform19 as an example, microspheres with receptors on their surfaces

to capture biological targets (DNAs, RNAs, or proteins) are immobilized by the trap arrays

through microfluidic techniques. The trap array geometry must be rationally designed to maxi-

mize the trapping efficiency of microspheres and minimize fluidic errors (i.e., traps that are

occupied by no or multiple microspheres, or traps with clogged channels). The importance of

hydrodynamic property in the successful trapping of the microspheres, demonstrated in our pre-

vious publication,19 highlighted the value of CFD simulations in predicting and investigating

the movement of microspheres in the microfluidic device.

To address this need, in this work, we create a finite element (FEM)20 simulation model to

study the hydrodynamic trapping of microspheres in our microfluidic particle-trap array device.19

To our knowledge, no similar systems have been simulated before. Therefore, our simulation

will be a significant addition to the existing toolbox on the theoretical design and understanding

of increasingly complex hydrodynamically engineered microfluidic systems. A time-dependent

simulation of a microsphere’s trapping process shows excellent agreement with the experimental

observation, which benchmarks the microfluidic device. Based on the simulation, we investigate

the fluid velocity field, pressure field, and force and stress on the microsphere in the device.

We further explore the trap’s geometric parameters and the critical fluid velocity, above which

subsequent microspheres would not bypass the already-filled trap but would collide with it.

Selecting appropriate geometric parameters and obtaining the critical fluid velocity are helpful to

ensure efficient trapping of microspheres and reduce potential fluidic errors in the device.

While we employ the FEM simulation to study the hydrodynamic trapping of microspheres

in the microfluidic particle-trap array systems, one can tailor and customize it for similar micro-

fluidic systems with complex structures and may involve different particles. We implement the

simulation in COMSOL Multiphysics21 and release it on our website by following the link in

Ref. 22. The simulation set-up discussed in this paper can also provide some guidelines to help

future users to tailor the model to their specific problems.

This paper is organized as follows. In Sec. II, we outline the theoretical fundamentals of the

numerical model. In Sec. III, we present the configuration of the microfluidic particle-trap array

device. Then, we discuss the simulation set-up in detail. In Sec. IV, we compare the simulated

trapping process for one microsphere with our experimental results, in terms of the microsphere’s

displacement over time. For the fluid, we present its velocity and pressure fields. For the micro-

sphere, we compute its velocity and the total force acting on it. We also show the stress on and

deformation of the microsphere. We further explore the trap’s geometric parameters and fluid

velocities, which affect the microsphere’s motion towards the trap. At the end of this section, the

merits and limitations of the model are discussed. Section V concludes the paper.

II. THEORETICAL FUNDAMENTALS

The conceptual principles of the simulation model for the microfluidic system are straight-

forward. In this system, the fluid flow is described by the Navier-Stokes equations,23 and the

particles (e.g., microspheres) obey linear elastodynamics and Newton’s equation of motion.24
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The coupling of fluid flow and solid mechanics is implemented by fluid-solid interaction, where

the fluid imposes force on the particles’ surfaces from fluid pressure and viscous drag. The

finite element method (FEM)20 is employed to create a mesh of the simulation domain and

discretize governing equations for solutions. Due to the movements and interactions of the fluid

and particles, the mesh geometry is continuously moving and deformed. The arbitrary

Lagrangian-Eulerian (ALE) technique25 is further employed to describe the dynamics of the

deforming geometry and moving boundaries of the mesh, which helps create a new mesh and

maintains numerical stability and accuracy. Table I summarizes required and changeable input

parameters and output variables in the simulation model. Detailed equations are presented next.

A. Fluid flow

The fluid flow in microfluidic systems, if assumed incompressible, is described by the

Navier-Stokes equations,23

qf

@uf

@t
þ qf ðuf � rÞuf ¼ r � ½�pf I þ lf ðruf þ ðruf ÞTÞ� þ Ff ; (1)

qfr � uf ¼ 0; (2)

where qf denotes the fluid density (kg/m3), uf ¼ ðuf ; vf ;wf Þ ¼ 0 the fluid velocity field (m/s,

m/s, m/s), t the time (s), pf the pressure (Pa), rðÞ the divergence operator, rðÞ the gradient

operator, I the identity matrix, and lf the fluid dynamic viscosity (Pa�s). Moreover, qf
@uf

@t repre-

sents the unsteady inertia force (N/m3), qf ðuf � rÞuf represents the non-linear inertia force, and

Ff is the volume force affecting the fluid (N/m3, or N/m2 for a 2D model). For a pressure-

driven flow without gravitation or other volume forces, Ff ¼ 0. Given the values of qf , t, lf ,

and Ff , the Navier-Stokes equations solve for uf and pf .

Due to the high computational demand in three dimensional (3D) fluidic dynamics simula-

tion, two dimensional (2D) simulation is preferred. For microfluidic channels with an almost

TABLE I. Input parameters and output variables for the simulation model.

Input parameters

Geometry of the microfluidic device (e.g., device length L (m), width W (m), height H (m))

Location and geometry of obstacles in the device, if any

Location, release method, and shape of the particles (e.g., spherical particle radius r (m))

Properties of the fluid (e.g., fluid density qf (kg/m3), dynamic viscosity lf (Pa�s), volume force affecting the fluid Ff (N/m3))

Properties of the particles (e.g., particle density qS (kg/m3), Young’s Modulus ES (Pa), Poisson ratio RS)

Inlet and outlet conditions (e.g., velocity (m/s), pressure (Pa), stress (N/m2), or mass flow (kg/s))

Boundary conditions of device sidewalls and obstacles (e.g., no-slip wall)

Initial conditions of the fluid and the particles

Properties of mesh (scale and size Dx)

Computation set-up (e.g., time range (s), time step size Dt (s), relative tolerance, solver type, etc.)

Basic output variables, from which other variables of interest can be computed

Fluid velocity field uf ¼ ðuf ; vf ;wf Þ (m/s, m/s, m/s)

Fluid pressure qf (Pa)

Particle displacement field us ¼ ðus; vs;wsÞ (m, m, m)

Particle infinitesimal strain tensor es

Particle Cauchy stress tensor rs

Volume force affecting the particle Fs (N/m3)

Coordinates of the spatial frame x,y,z

Coordinates of the material frame X,Y,Z
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rectangular cross section where the thickness is much less than the channels’ width, simple 2D

models often fail to give correct results because they exclude the boundaries, which have a

great effect on the flow. To consider the effect of these boundaries, shallow channel approxima-

tion is proposed.23 The approximation adds a drag term as a volume force to the fluid flow

equation, which represents the resistance that the parallel boundaries place on the flow. The

form of the drag term is

Fl ¼ �12
lf uf

H2
; (3)

where H is the channel thickness (m).

Because of the microfluidic system’s small dimensions and fluid velocities, the Reynolds

number Re ¼ lUqf =lf (l is the characteristic length and U is the average velocity) of the flow

is small (Re� 100). Thus, the flow stays laminar over most of the area.23 When the velocities

of the fluid are very small, Re becomes very low (Re� 1). The Strouhal number St ¼ Fl=U (F
is the frequency of vortex shedding) is large (order of 1), and viscosity dominates the fluid

flow, resulting in a collective oscillating movement of the fluid. Under this circumstance, flow

in the system becomes Stokes flow (also called creeping flow), and the unsteady inertia force

greatly dominates over the non-linear inertial force. Therefore, the non-linear inertial force

qf ðuf � rÞuf can be neglected. Combining the shallow channel and Stokes flow approximations

with the incompressible Navier-Stokes equations, Eq. (1) becomes

qf

@uf

@t
¼ r � ½�pf I þ lf ðruf þ ðruf ÞTÞ� � 12

luf

H2
þ Ff : (4)

B. Solid mechanics

The solid, if assumed to undergo small deformation and subjected to low load, has iso-

tropic linear elasticity. The displacement and deformation of the solid satisfy the governing

equations of linear elastodynamics,24

es ¼
1

2
½ðrusÞT þrus þ ðrusÞTðrusÞ�; (5)

r � rs þ Fs ¼ qs

@2us

@2t
; (6)

rs ¼ Ces: (7)

Here, Eq. (5) is the strain-displacement (compatibility) equation, with es denoting the infini-

tesimal strain tensor and us ¼ ðus; vs;wsÞ denoting the solid displacement field (m, m, m).

Equation (6) is Newton’s equation of motion, with rs the Cauchy stress tensor, Fs the body

force per unit volume (N/m3) or boundary force per unit area in 2D (N/m2), and qs denoting

the solid density (kg/m3). Equation (7) is the linear elastic stress-strain law, with C as the stiff-

ness matrix given by

C ¼ Es

ð1þ RsÞð1� 2RsÞ

1� Rs Rs Rs 0 0 0

Rs 1� Rs Rs 0 0 0

Rs Rs 1� Rs 0 0 0

0 0 0 1� 2Rs 0 0

0 0 0 0 1� 2Rs 0

0 0 0 0 0 1� 2Rs

2
66666664

3
77777775
; (8)

where Es is Young’s modulus of the solid (Pa), and Rs is the Poisson ratio of the solid.

Given the values of qs, t, Fs, Es, and Rs, Eqs. (5)–(8) solve for us, es, and rs.
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C. Fluid-solid interaction (FSI)

The FSI couples fluid flow with solid mechanics to capture the interaction between the

fluid and the solid, which is applied through their boundary. It defines the fluid load on the

solid and how the solid displacement affects the fluid’s velocity,

f s ¼ �n � ½�pf I þ lf

�
ruf þ ðruf ÞT

�
�; (9)

uw ¼
@us

@t
; uf ¼ uw; (10)

where Eq. (9) presents the total force (caused by the fluid pressure and viscous force) exerted

on the solid boundary, and n is the outward normal to the boundary. From Eq. (10), on the

fluid-solid boundary the fluid velocity uf equals the rate of change for the displacement of the

solid uw. In other words, the solid boundary acts as a no-slip wall for the fluid domain.

FEM20 is employed to create a mesh of the simulation domain and discretize the governing

Eqs. (1)–(10), so as to approximate the solutions within a mesh element using simple functions.

For a time-dependent problem, the Navier-Stokes equations of the fluid flow are solved using

an Eulerian description and a spatial frame. Explicitly, the mesh in the fluid domain is freely

moving, with initial mesh displacement as zero. With each moving mesh element, a smoothing

function is associated and leads to effective forces between neighboring elements, resulting in

substantial redistribution and deformation of the whole configuration of the mesh. The solid

mechanics are formulated using a Lagrangian description and a material (reference) frame. That

is, the mesh in the solid domain is fixed and undeformed.25 Therefore, the force Fs on the solid

is a transformation of f s,

Fs ¼ f s

dv

dV
; (11)

where dv and dV are the mesh element scale factors for the spatial frame and the material

frame, respectively.

To combine the interface between the spatial frame of the fluid and the material frame of

the solid, the arbitrary Lagrangian-Eulerian (ALE) method is employed,25 which computes new

mesh coordinates based on both the movement of the solid’s boundary and mesh smoothing of

the fluid.

D. Boundary and initial conditions

The fluid flows from the channel inlet to the outlet, driven by the pressure difference

between the inlet and the outlet. At the inlet, the flow is defined to have fully developed lami-

nar characteristics with a parabolic velocity profile and mean velocity u0 (m/s). By defining a

parabolic velocity profile instead of a constant velocity, one ensures a better convergence of the

nonlinear solver at the beginning. A simple definition of the inflow velocity profile U0 for a

rectangular channel is23

U0 ¼ u0 �
6ðW � YÞY

W2
; (12)

where W is the width of the inlet, and Y is the material frame coordinate along the inlet.

At the outlet, the boundary condition is defined as vanishing viscous stress along with a

Dirichlet condition on the pressure:

pf ¼ 0; lf ðruf þ ðruf ÞTÞn ¼ 0: (13)

On the solid walls, such as the simulation domain sidewalls and the fixed obstacles (e.g.,

traps in our particle-trap array device), no-slip wall condition is applied to the fluid,
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uf ¼ 0; (14)

and the prescribed mesh displacements of these walls are defined as zero.

For the initial values of the fluid velocity field uf , pressure pf , particle displacement field

us, and particle velocity field @us=@t, one can assign specific values if there are good estima-

tions. Otherwise, one can set them as zeros for simplicity.

III. FROM DESIGN TO SIMULATION

We apply the finite element simulation to our microfluidic particle-trap array device design

and validation.19,26 We also investigate the set-up requirements of the simulation, including the

selection of mesh scales, moving mesh conditions, time step size, solver types, etc.

A. Configuration of the microfluidic particle-trap array device

Figure 1 presents a schematic of the microfluidic particle-trap array device. The microflui-

dic channel has an inlet on the left side and an outlet on the right side. The traps in the channel

are made of polydimethylsiloxane (PDMS), with each trap shaped as inverted-trapezoid

grooves. The trap arrays are periodic, with each row offset horizontally with respect to the one

ahead of it. A liquid solution (water) carrying polystyrene microspheres of radius r¼ 5 lm

flows from the inlet and through the channel. We note that the microspheres are the only

“solid” to be considered in the equations of the solid mechanics and the fluid-solid interaction

described in Sec. II, while the traps are assumed to be fixed and act as the no-slip boundary to

the fluid. In simulations, one usually can shorten the length and the width of the channel with

respect to the real device to reduce the computation, without changing its hydrodynamic charac-

teristics. One also can make other appropriate simplifications of the experimental situation. As

the inlet effectively injects single or several microspheres into the channel at a time, the inflow

of microspheres can be emulated in the simulation by a generic source of microspheres placed

at a certain distance away from the traps. The geometric parameters of the trap array device26

and the present simulation parameters are given in Table II.

B. Assessment of the simulation

The flow through the device (Figure 1) is characterized by the Reynolds number

(Re ¼ lUqf=lf ). In our case, the characteristic length l is the microsphere’s diameter 2r, and U
is the relative velocity between the steady state flow and the microsphere. Therefore, when the

relative velocity �10 cm/s and Re� 1, the system can be treated at the asymptotic limit of

Stokes flow.23

As for the thermal motion (Brownian motion), its relative importance can be characterized

by the Peclet number Pe,27

FIG. 1. Schematic diagram of a microfluidic particle-trap array device. The microfluidic channel has an inlet on the left

side and an outlet on the right side. The traps in the channel are made of polydimethylsiloxane (PDMS), with each trap

shaped as inverted-trapezoid grooves. The trap arrays are periodic, with each row offset horizontally with respect to the one

ahead of it. A liquid solution carrying a particle (e.g., polystyrene microsphere) of radius 5 lm flows from the inlet and

through the channel. The values of the device’s geometric parameters are given in Table II.
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Pe ¼ UL=Ddiff ; Ddiff ¼ KBT=6plf r; (15)

where U (m/s) is the velocity of the microsphere, L (m) is a typical distance that the micro-

sphere can travel (say, the distance from the inlet to outlet of the microfluidic channel), Ddiff is

the Einstein expression for the diffusion coefficient of a spherical particle of radius r (m/s), KB

is the Boltzmann constant, and T (K) is the experiment temperature. In our case, Pe is much

larger than 1. Thus, the thermal motion of the microsphere is negligible27 and is not considered

in our simulation.

C. Mesh creation, smoothing, independence test, and remeshing

As we mentioned in Sec. II, to solve the governing equations, FEM is employed to create a

mesh of the simulation domain and to discretize the equations. The ALE technique is used to

describe the interface between the fluid and the microsphere. During the time-dependent solution

process, the mesh in the microsphere domain is fixed and undeformed, while the mesh in the fluid

domain is freely moving and deformed in response to mesh smoothing and the movement of the

microsphere. For the mesh smoothing function, Winslow smoothing or hyperelastic smoothing is

recommended.28,29 Both smoothing methods are nonlinear and robust, and work well for our prob-

lem. The hyperelastic method can give a smoother result than Winslow does, particularly in

regions where the mesh is highly stretched. Therefore, when the solid particle has large elasticity

(e.g., a blood cell) with large deformation expected, the hyperelastic method is more suitable.

Figure 2 presents the initial mesh (with free triangular shape) at t¼ 0 s, which is generated

prior to solving the model. Though the mesh is not uniform, with denser and smaller elements

at the fluid-solid boundaries and looser and larger elements in the fluid domain, the mesh is

equally distributed around the microsphere. Figure 2 also illustrates how the mesh moves with

a continuously deforming geometry at a series of subsequent time points t¼ 0.275 s, 0.641 s,

0.916 s, and 1.191 s. Because the microsphere is moving along the x direction, the mesh is also

moving in this direction (shown by the red arrows in the figure).

As exact analytical solutions to the equations are unknown, a mesh independence test can

be used to choose an appropriate mesh size. It is performed by increasing the mesh size

(denoted as mesh scale) until the difference between the results for two successive mesh scales

TABLE II. Present simulation parametersa.

L (channel length) 360 lm

W(channel width) 140 lm

H (channel height) 20 lm

v (upper width of trap opening) 10 lm

b (bottom width of trap opening) 7.6 lm

st (upper width of groove walls) 6.6 lm

sl (length of groove walls) 6.6 lm

h (height of groove walls) 16.5 lm

g1 (gap between two neighboring traps on the same row) 23.3 lm

g2 (gap between two successive row) 23.3 lm

r 5 lm

qf 1000 kg/m3

lf 0.001 Pa�s
u0 70 lm/s

qs 1050 kg/m3

Es 3 MPa

Rs 0.33

Dt 0.001 s

aMesh scale is provided in Table III.
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is negligible. Table III presents the properties of different mesh scales, and the degrees of free-

dom in solving the equations. Figure 3 plots the velocity of the microsphere at t¼ 0 s� 0.2 s

under different mesh scales. It can be seen that the differences among the velocities for the

mesh scales fine, finer, extra fine, and extremely fine (as defined in Table III) are very small.

Considering the computational efficiency and to reduce the chance that the solver might not

converge at an extreme, the scale finer is used for subsequent simulation.

When the mesh deformation of ALE becomes large (in our case when the microsphere

draws near to the trap), the quality of the mesh created by the smoothing function deteriorates

and the mesh elements may be (partially) warped inside-out (inverted coordinates). Inverted

coordinates do not mean a failure of the simulation, but they do imply that results at these

elements will not be used in further iterations. If these elements are not in the vicinity of the

area of interest, the simulation is still expected to be reliable. However, if there are many

inverted coordinates, the accuracy of the solution is reduced and the solver runs into conver-

gence problems. To solve this issue, a new mesh can be generated for the region covered by

the deformed mesh, and then letting the solver continue by deforming the new mesh.

Explicitly, we define a requested mesh quality (as a scalar number between 0 and 1, typically

smaller than 0.2). When the mesh quality becomes smaller than the requested one, the solver

stops and remeshes at a previously stored solution time. Then the simulation continues using

the new mesh from this solution time.

FIG. 2. Mesh and geometry movement and deformation at a series of time points: initial mesh (full-size plot) at t¼ 0 s, and

deformed mesh (zoomed-in plots) at t¼ 0.275 s, 0.641 s, 0.916 s, and 1.191 s. The microsphere, which is underneath the

densest meshes in each plot, is shown in red. The arrows represent the mesh direction and velocity, with their sizes indicat-

ing the velocity magnitude.

TABLE III. Mesh scales in mesh independence study.

Mesh scale

Maximum element

size (lm)

Minimum element

size (lm)

Maximum element

growth rate

Resolution of

curvature

Number of

elements

Degrees of

freedom

Extremely fine 0.938 0.028 1.05 0.25 167 324 408 559

Extra fine 1.82 0.21 1.08 0.25 46 780 114 918

Finer 3.92 0.56 1.1 0.25 12 214 30 759

Fine 4.9 1.4 1.13 0.3 9708 24 299

Normal 6.3 2.8 1.15 0.3 7629 18 794

Coarse 9.28 4.2 1.2 0.4 2942 7518
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D. Selection of time step size

The time step size Dt (s) affects the numerical stability, accuracy, and efficiency of the

computation. The selection of Dt can be quite complex and here we provide only some guide-

lines. First of all, an appropriate Dt should satisfy the necessary Courant-Friedrichs-Lewy

(CFL) condition (UDt=Dx � 1), where U (m/s) is the velocity and Dx (m) is the mesh size.30,31

Then, one can use a single Dt for the simulation time. However, this may result in a too small

Dt and an inefficient computation. Alternatively, one can use a Dt that meets the local CFL

condition. In such an arrangement, most of the computation is concentrated in simulation time

ranges with the finest mesh and largest mesh deformation. In the time ranges of coarse mesh

and small mesh deformation, the solution is updated only occasionally with a much larger Dt.

E. Selection of solvers

To solve the time-dependent simulation problem, we consider two solution approaches,

fully coupled or segregated. For the fully coupled solver, the multiple physics from Eqs. (1) to

(14) are coupled together. Thus, the fluid velocity and pressure, as well as the microsphere

motion, stress, and strain are solved at the same time. For the segregated solver, the solution

process is split into several steps. Explicitly, for a current microsphere position, the fluid flow

is solved using the velocities at the microsphere surface from the previous step, which used the

fluid-solid interaction boundary condition Eq. (10) and fluid flow Eqs. (1)–(4). Then the total

force, which includes viscous and pressure terms from the fluid, is evaluated at the microsphere

surface (Eqs. (9) and (11)). The force is further used in Eqs. (5)–(8) for defining the micro-

sphere’s motion and deformation. In our case, we observe that the segregated solver takes a lot

more computational time than the fully coupled solver does, and its estimated error of solution

(on the order of 106) is also much larger than that of the fully coupled one (on the order of

10). Therefore, the fully coupled solver is employed. Moreover, we choose a damped version

of Newton’s method for the solver, and let the solver automatically determine the damping

factor in each iteration.32

IV. SIMULATION RESULTS, VALIDATION, AND DISCUSSION

In this section, we present the simulation results of the hydrodynamic trapping in the

microfluidic particle-trap array device. First, to validate the accuracy of the simulation, we per-

formed a microsphere trapping experiment using the device and compared the experimental

results with the simulation in terms of the microsphere’s displacement over time. Then, we

investigate the simulation results of some variables that are difficult to measure experimentally

FIG. 3. Time-dependent plots of the microsphere’s velocity along the x direction at different mesh scales.
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in the trapping process. For the fluid, we provide its velocity and pressure fields. For the micro-

sphere, we compute its velocity and the total force on it. We also show the stress on and defor-

mation of the microsphere. We further explore the trap’s geometric parameters and the critical

fluid velocity, above which the subsequent microspheres would collide with, instead of bypass-

ing, a trap that is already filled by a microsphere. Finally, the merits and limitations of the

model are discussed.

A. Flow velocity field and microsphere displacement: Simulation versus experiment

Figure 4(a) presents the simulated flow velocity field at a series of time points (full size

plot at t¼ 0 s, and zoomed-in plots at t¼ 0.275 s, 0.641 s, 0.916 s, and 1.191 s). The streamlines

FIG. 4. (a) Flow velocity field at a series of time points (full size plot at t¼ 0 s, and zoomed-in plots at t¼ 0.275 s, 0.641 s,

0.916 s, and 1.191 s). The streamlines indicate the flow direction, and the rainbow color represents the flow-velocity magni-

tude distribution with a fixed value range for all plots. These plots also present the positions of a 10lm microsphere at these

different time points in the experiment and in the simulation. (b) Time-dependent plots of the displacements of the micro-

sphere along the x direction in the simulation and in the experiment. Video recordings, one of the experiment and one of

the simulation of the whole process (t¼ 0 s� 2.02 s) are in Video S1 and Video S2,33 respectively.
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indicate the flow direction, and the rainbow color represents the flow-velocity magnitude distri-

bution with a fixed value range for all plots. We observe that the flow moves faster through the

gaps among the traps, and smaller through the traps due to the traps’ small openings. The

flow’s velocity is zero at the boundaries of the traps. The streamlines clearly show that there

are no vortices in the creeping flow. Moreover, only the flow in close proximity to the micro-

sphere is affected by the microsphere’s motion. Once a trap is filled by the microsphere, the

flow is blocked at the trap.

Figure 4(a) also shows the positions of a microsphere at the different time points in the

experiment and the simulation. Figure 4(b) further compares the time-dependent displacements

of the microsphere along the x direction in the experiment and in the simulation. The displace-

ment of the microsphere increases almost linearly and finally stays constant when the micro-

sphere gets immobilized at the trap. The simulation results agree well with the experiment. Two

videos recordings of the experiment and of the simulation of the microsphere’s trapping process

(t¼ 0 s� 2.02 s) are provided in Video S1 and Video S2 in the supplementary material.33

B. Microsphere velocity and total experienced force

Figure 5 presents time-dependent plots of the microsphere’s velocity (5(a)) and experienced

total force (5(b)) along the x direction. At the beginning, when the microsphere is far away

from the trap, it has almost the same velocity as that of the surrounding steady-state fluid, and

thus experiences little force from the fluid. As the microsphere flows toward the trap, the veloc-

ity of the fluid ahead decreases because of the trap in path, and exerts negative drag on the

microsphere. When the microsphere is very close to the trap, it experiences a large negative

force and its velocity reduces sharply. Finally, the total force (force imposed by the trap and

fluid force) and velocity become zero when the microsphere is immobilized at the trap.

We note that the line plots of the velocity and force are not smooth and have discontinu-

ities. Because the velocity is the displacement’s first derivative and the force is related to its sec-

ond derivative, when the sizes of the discrete elements in solving the equations are not infinitely

small, any small perturbation in the solution of displacement will result in large discontinuities

in its derivatives. There is even a peak in the force plot before this variable decreases sharply.

Remeshing and solution mapping seem to have resulted in the peak, because at that time the gap

between the microsphere and the trap is too small to cause severe mesh deformation.

C. Flow pressure field

Figure 6 shows the pressure field of the flow at a series of time points (full size plot at

t¼ 0 s, and zoomed-in plots at t¼ 0.275 s, 0.641 s, 0.916 s, and 1.191 s). The rainbow-colored

contour represents the pressure magnitude distribution: the magnitude of the pressure at the

inlet is the greatest and it gradually decreases along the channel until the outlet. However, we

note that the pressure at the outlet is actually predefined as zero through boundary condition

FIG. 5. Time-dependent plots of the microsphere’s (a) velocity and (b) experienced total force, along the x direction.
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Eq. (12), which may not be the real situation. An accurate description of pressure boundary

conditions merits application-specific refinements.

When the microsphere is far from the trap, it is impacted only by the flow pressure and vis-

cous drag surrounding it. When the microsphere is close to the trap, the pressure between the

microsphere and the trap increases and imposes negative force on the microsphere. When the

microsphere is immobilized at the trap, the pressure in the very small gap between the micro-

sphere and the trap becomes even larger than that at the inlet. Therefore, to ensure the stable trap-

ping of the microsphere, i.e., the microsphere is retained in the trap and is not swept away due to

the transient flow motion around the trap, a persistent pressure should be provided at the inlet.

D. Stress on the microsphere

Figure 7 presents the von Mises stress on the microsphere at a series of time points

(zoomed-in plots at t¼ 0 s, 0.275 s, 0.641 s, 0.916 s, and 1.191 s). The von Mises stress34 is a

FIG. 6. Flow pressure field at a series of time points (full size plot at t¼ 0 s, and zoomed-in plots at t¼ 0.275 s, 0.641 s,

0.916 s, and 1.191 s). The rainbow-colored contour represents the pressure magnitude distribution. The pressure magnitude

ranges of the plots are the same (0 Pa� 1.711 Pa) except for that of the plot at t¼ 1.191 s (0 Pa� 3.3239 Pa), where the

greatest pressure (3.3239 Pa) occurs in the very small gap between the microsphere and the trap.

FIG. 7. Stress on the microsphere at a series of time points (zoomed-in plots at t¼ 0 s, 0.275 s, 0.641 s, 0.916 s, and

1.191 s). The color of the microsphere represents the stress magnitude distribution, and the maximum and minimum stress

points on the microsphere are also presented in blue color.
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scalar stress value computed from the stress tensor of a solid, which is often used in determin-

ing whether a particle will yield when subjected to a complex loading force. In this figure, the

traffic color on the microsphere represents the stress magnitude distribution. The maximum and

minimum stress points are also presented. When the microsphere is far from the trap, the stress

on the microsphere is almost a constant and is uniformly distributed, although due to the larger

fluid pressure the stress close to the inlet is a bit larger than that of the outlet. When the micro-

sphere is trapped, because of the force from the trap, the stress on the microsphere increases

dramatically, especially at the contact points of the microsphere. Nevertheless, the stress is not

sufficient to cause any obvious deformation of the microsphere, due to its low elasticity.

If the trap array device is applied to trap biological cells (e.g., blood cells), the investiga-

tion of stress acting on the cells is useful. Stress can lead to biological and biochemical conse-

quences in cells, such as cell deformation, differentiation, and even cell death.35,36 Simulation

will help select proper experimental conditions (fluid pressure, velocity, trap material, etc.) that

avoid undesired damage of the fragile particles.

E. Investigations of trap’s geometric parameters and critical fluid velocity

The microfluidic particle-trap array device employs fluidic resistance and path engineering

to perform precise hydrodynamic trapping of micron-scaled particles.19 During the loading

process, a particle (a microsphere in our case) in the fluid has two possible flow paths, trap-
ping or bypassing. Here, trapping is defined as a microsphere flowing into the trap, and

bypassing is defined as the flow of subsequent microspheres through the channels next to the

trap. This scheme for a single trap is applicable for all the traps. The trap array geometry

should be designed so that the trapping path for an empty trap has a lower flow resistance

than the bypassing path. Then the microsphere is most likely to move into an empty trap

through trapping. However, once the trap through trapping is loaded by a microsphere, the

flow resistance in trapping dramatically increases and is much larger than that in bypassing,

and thus subsequent microspheres divert to the bypassing path and get immobilized by another

trap downstream.

Now, we employ the simulations to explore the critical fluid velocity and the critical trap

width, above which the subsequent microspheres would collide with the filled trap by its inertia,

instead of bypassing the trap. Such collision prevents us from operating the microspheres’ trap-

ping process in a controlled manner and may cause large fluidic errors. The critical velocity

found in the simulations suggests that microsphere-trapping experiments be operated below this

velocity. The critical trap width found in the simulations adds an additional optimization con-

straint (i.e., upper limit of the trap width) to the optimal design framework of the device in our

previous work.19

To study the effect of the trap width, both v (upper width of trap opening) and st (upper

width of groove walls) can be adjusted. Here, we gradually increase v from 10 lm and keep

st ¼ 6:6 lm constant. For a feasible fabrication, the value of st is selected to ensure that the

aspect ratio (the ratio of transverse dimensions to height h ¼ 16:5 lm) is greater than 0.4.26 The

other geometric parameters of the trap array are also kept constant as given in Table II.

To eliminate simulation symmetry, the microsphere is released 5 lm off the centerline of y
direction of the flow domain. Figure 8(a) shows that at v ¼ 10 lm and an inlet mean velocity

u0 ¼ 70 lm/s, the microsphere easily bypasses the trap. When the width of the trap increases,

the zero-flow-velocity area increases and the microsphere has to travel a longer distance along

the trap to bypass it. Our simulation indicates that when v increases to 24 lm (Figure 8(b)), the

microsphere collides with the trap. Therefore, to ensure efficient bypassing of the occupied

trap, v should not be larger than 24 lm. On the other hand, v should not be too small compared

with the microsphere’s diameter. Otherwise, the microsphere gets only its bottom clamped in

the trap and is easily swept away by the transient flow around it.

To study the effect of fluid velocity, we keep the trap’s geometric parameters constant

and gradually increase the inlet mean velocity u0. As shown in Figure 8(c), when u0 increases

to 2500 lm/s, the microsphere collides with the boundary of the trap. Therefore, we estimate
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u0 ¼ 2500 lm/s as the critical fluid velocity, and would suggest that microsphere-trapping

experiments be operated below this velocity.

Note that in this subsection’s simulations, the mesh size is assigned to be extremely fine

and the time step size is set as Dt ¼ 1e�6 s, to ensure the convergence of the solver and the

accuracy of these critical parameters.

F. Discussion

Numerical simulation may not exactly replicate events in reality, especially when some

physical phenomena are not considered or incorporated in the model. Numerical approximations

in the finite element method also lead to slightly inaccurate simulation results. However, careful

examination of simulation results and comparison with the experimental data can validate the

use of the model as a benchmarking and explorative tool.

In this work, we focus on the hydrodynamic trapping of the microsphere, i.e., the interac-

tions among fluid and the microsphere, the fluid viscous drag force and pressure exerted on the

microsphere, and the microsphere’s trajectories (displacements). The interactions among the

microspheres, they are enabled by the changes of fluid flow. While the interactions actually

comprise a variety of mechanisms and forces spanning several length scales, such as electro-

static, elastic, and other short range surface forces; these phenomena are difficult to represent at

the present level of modeling. Nevertheless, in situations where the number of microspheres in

the fluid is small, such as in our trap array device where the concentration of microspheres is

carefully selected to avoid aggregation and channel clogging, the interactions among micro-

spheres seldom happen. Therefore, for these situations, the overall numerical efficiency is not

affected. Further refinements of the model could include the full hydrodynamic interactions

between the microspheres.

Though we test only hydrodynamic trapping of microspheres in the particle-trap array

systems in this paper, we have made the simulation customizable and openly accessible to other

researchers and have provided guidelines on the simulation set-up, including how to choose the

mesh properties, moving mesh conditions, time step size, and solver type. Therefore, one may

FIG. 8. Effects of trap width and fluid velocity on the microsphere’s motion toward a filled trap, shown by zoomed-in flow

velocity field plots. The streamlines indicate the flow direction, and the rainbow color represents the flow-velocity magni-

tude distribution. (a) When the upper width of the trap opening v¼ 10 lm and the inlet mean velocity u0 ¼ 70 lm/s, the

microsphere easily bypasses the filled trap. (b) When u0 is fixed at 70 lm/s and v increases to 24 lm, the microsphere

collides with the boundary of the trap. (c) When v is fixed at 10 lm and u0 increases to 2500 lm/s, the microsphere also

collides with the boundary of the trap.
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tailor the simulation to investigate similar microfluidic systems with complex structures and

may accommodate a variety of particles, such as colloids, biological cells (e.g., red blood cells,

circulating tumor cells), polymers, and target-tagged microspheres, by modifying the properties

of the particles (e.g., elasticity, structure). To our knowledge, such customizable and ready-to-

use tools for similar microfluidic systems are not easily accessible for device fabricators or

users. We believe this model will be of particular interests to biomedical research that may

involve blood flow within microvessels, cell or particle transport and migration, bio-imaging,

and drug delivery.

V. CONCLUSIONS

We have studied the hydrodynamic trapping in the microfluidic particle-trap array systems

by finite element simulation. In the simulation, the time-dependent, laminar, and incompressible

fluidic dynamics and solid mechanics equations are coupled and solved computationally through

finite element techniques. The simulated hydrodynamics in the microfluidic channel impacting

the moving microsphere agree well with the experimental observation. The study of the hydro-

dynamic trapping enables rational design on the geometric parameters, fluid velocity and pres-

sure, and stress on the micro-particles in the flow. Therefore, the FEM simulations provide a

powerful explorative tool in designing and implementing microfluidic devices.
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